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PREFACE

This Note describes some results of ongoing research on techniques for managing

geographic data by a database management system. The research is part of an effort to

increase U.S. force effectiveness by improving the information that forces will use for

planning, deploying, and executing orders through interactive electronic maps. Its objective

is to support the consistent presentation of map and force information at different command

levels, using maps of different resolutions.

This work is sponsored by the Defense Advanced Research Projects Agency. It is being

carried out in the Information Processing Systems Program of the National Defense

Research Institute, RAND's federally funded research and development center sponsored by

the Office of the Secretary of Defense and the Joint Staff.
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SUMMARY

Spatial queries are a fundamental class of queries on geographic data that consist

primarily of points, lines, and polygons. Enhancing response time of spatial queries requires

a spatial index.

The chaintree is a dynamic spatial index structure being developed at RAND, based on

a regular planar straight line graph. The chaintree organizes polygons to efficiently answer

spatial queries. An operation basic to most chaintree procedures is polygon intersection.

This Note presents a new algorithm for finding the intersection of two uniformly monotone

polygons in linear time and space without preprocessing.
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1. INTRODUCTION

The chaintree, a spatial index structure based on a decomposition of the plane into

monotone subdivisions (Lee and Preparata, 1977; Preparata and Tamassia, 1989), was

developed to address the problem of providing quick response to geographic vector queries

requiring point location and polygon intersection operations.

This research has been conducted as part of an effort to develop an electronic

environment for displaying, storing, accessing, and deriving different resolutions of

geographic vector data. The various resolutions are derived electronically, using a knowledge

base of descriptions, functions, and rules that express relationships describing how an object

is to be represented and presented at varying resolution levels.

Interactive queries to an electronic map often involve geometric operations which can

take an excessive amount of time if the geographic data are stored using more conventional

indexing techniques (e.g., B-trees, R-trees). In particular, the two types of queries examined

in this study are the point location problem and the polygon intersection problem (Cole and

Yap, 1984). Given a query point p and a set of polygons , the answer to the point location

problem is the set of polygons containingp. Given a query polygon P and a set of polygons ,

the set consisting of those polygons that intersect P form the answer to the polygon

intersection problem. To enhance response time of these two types of spatial queries, we are

developing the chaintree. An important function in this development process is the

intersection of two monotone polygons.

Polygon intersection is a fundamental problem in computational geometry. It is well

known that to compute the intersection of two simple (non-self-intersecting) polygons

requires 9(n 2 ) time, n being the total number of vertices. However, algorithms for finding

the intersections of convex polygons, a special type of simple polygon, in linear time are well

known (Shamos and Hoey, 1976; O'Rourke et al., 1982). The class of monotone polygons

properly contains the class of convex polygons and naturally arises when taking the

difference, union, or intersection of two convex polygons. Whereas the intersection of two

convex polygons results in, at most, one polygon, 0(n) polygons can stem from the

intersection of two polygons, monotone with respect to the same axis. We present an

algorithm for finding the intersection of two uniformly monotone polygons in linear time and

space without preprocessing.

In Sec. 2, we present preliminary definitions and context. In Sec. 3, we review some

facts about monotone chains and define the upper chain and lower chain of two uniformly

I-- I I- - I I I l lIi i ~ a Im
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monotone chains. Strips are defined in Sec. 4, and an algorithm for intersecting two strips is

presented. In Sec. 5, monotone polygons are presented, along with some new results. We

conclude with an algorithm for intersecting two uniformly monotone polygons.
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2. PRELIMINARIES

Definition 1: Let f be a function from an interval I to a point set J on the real number

line. The function f is

strictly increasing f (x) < f (y)]
strictly decreasing , f (x) > f (y)

nondecreasing ]f ( X ) ! f (y)

nonincreasing j f(x) 2! f( ) J

If f satisfies any of the conditions above, then f is a monotone function. Iff is either strictly

increasing or strictly decreasing, then f is a strictly monotone function.

Definition 2: A parameterized chain f is a continuous piecewise linear function from an

interval I on the real number line to a curve in the plane. The range off, f(I), is called the

chain off

Figure 1 illustrates a parameterized chain f whose domain, I, is a closed subset of the

real number line and whose range is a curve in E2.

A function f defined on a point set D is locally one-to-one if everyp E D has a

neighborhood on which f is one-to-one.

Fig. 1-Parameterized chain f defined on the interval I
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3. MONOTONE CHAINS

A monotone parameterized chain is a special type of parameterized chain whose

projection onto at least one axis (not necessarily the x-axis or y-axis) is either nondecreasing

or nonincreasing. Consider the points along an axis I as having a standard order, like that of

the real number line. The projection of a point or interval a, in E2 , onto I is denoted by

Yr('c t); however, when no ambiguity will result, the abbreviation rz(a) is used.

Definition 3: A paramete ed chain f is monotone with respect to an axis t if the

funct:,n ir(f(x)) is monotone.

Proposition 1: Let f be a continuous one-to-one function defined on a compact set; then

f inverse, f-1, is continuous.

Proposition 2: If f is a continuous function from S to R and g is a continuous function

from D to S, then the composition of f and g, f og is also continuous.

Proposition 3: If g is a one-tf"-one function defined on a set S and f is a one-to-one

function defined on g(S), then fog is also one-to-one.

Proposition 4: If f is a real-valued, one-to-one, continuous function defined on the

interval I, then f is monotone.

PROOF. If f is not monotone, then there exist three points a, b, c r I: a < b < c where

either f(b) is greater than both f(a) and f(c) or f(b) is less than both. Consider the first case

and suppose f(a) < f(c) < f(b). Then by the mean-value theorem, there is x G (a,b) such that

f(x) = f(cl. Butf is one-to-one, so x = c, a contradiction.

Likewise, f(b) < f(a) and f(b) < f(c) leads to a similar conflict.

Lemma 1: If f and g are locally one-to-one parameterized chains defined on the

intervals I and J, respectively, and if f(I) = g(J), then g is monotone with respect to an axis I

if, and only if, f is monotone with respect to t.

PROOF. Supposef is monotone with respect to V. First consider the case where both f

and g are one-to-one. By Proposition 1, f-I is continuous. There exists a function

m = f- 1 og



-5-

which is a continuous one-to-one mapping from J to I by Propositions 2 and 3. Thus, for any

p c I, there is a p' c J such that f(p) = g(p '). Furthermore, Proposition 4 affirms that m is

monotone.

If g is not monotone with respect to Q, then there exist three points a, b, c E J: a < b < c

where either

ir (g(b)) > ;r (g(a)) and r (g(b)) > ; (g(c))

or

ir (g(b)) < ir (g(a)) and r (g(b)) < r (g(c))

Consider, for the moment, the first case. In I there are exactly three points, a', b', and

c' such that

f(a) g(a), f(b) = g(b), and f(c') = g(c).

Iff is nondecreasing, then b'> a' and b > c' which suggests m((a,b)) r m((b,c)) * 0. Suppose

z E (a, b') n (c, b'); then by the mean-value theorem, there exists x E (a, b) andy E (c, b)

such that m(x) = m(y) = z. But m is one-to-one, so x = y, a contradiction. Alternatively, if f is

nonincreasing, then b'< a'and b'< c'leads to another contradiction.

An argument similar to the one used in the preceding paragraph shows the

impossibility of n(g(b)) < r(g(a)) and ir(g(b)) < ;r(g(c)). Therefore, if f is monotone with

respect to t, then g is monotone with respect to 1, when both are one-to-one.

Now the constraint thatf be one-to-one is relaxed. Let f be locally one-to-one and

suppose there exist three points a, b, c E I:a < b < c where ir(f(a)) = 7r(f(c)) nlf(b)). Thenf

is not monotone with respect to 1, a contradiction. By interchangingf andg, the proof is

complete.

We are now able to refer to chains as being monotone. Figure 2 shows a monotone

chain whose projection onto its monotone axis, i.e., the x-axis, is [a, b 1. Chains that are

monotone with respect to the same axis are called "uniformly monotone."

If C is a chain that is strictly monotone with respect to 1, then the mapping from r(C)

to C, iC 1 (x, t), is a function. The function d(p, ) denotes the signed distance from the line I

to the point p; d(p, 1) = I v I sin 0 where I v I is the norm of the vector from the origin of t to

p, and 0 E [00, 3600) is the angle from t to v in a counterclockwise direction (see Fig. 3).
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b

Fig. 2-A chain monotone with respect to the x-axis

d(pf= f vi n 0 < 0

Fig. 3-A point p whose distance from axis I is negative

Proposition 5: If C and D are two chains uniformly strictly monotone with respect to f

and 7 (C) = , (D) = [a, b], then

7 D-1 (x) otherwise,

and

( x ) {7rD' (x) otherwise,

are both parameterized chains defined on the interval [a, b].

PROOF. Both f= x6i and g = rD1 are parameterized chains, monotone with respect

to Q.

First, consider h. Let A = {X1, X2,.. , Xm) be a partition of the interval [a, b] such

that either d(f(x), t) _ d(g(x), t) and d(f(y), t) > d(g(y),t) or d(Tx), ) > d(g(x), 1) and

d(f(y), 1) < d(g(y), 1) for any X~i_! <x < 42i <y <5 X2i+,, where i = 1, 2,..., (m - 1)/2. The

function h is linear on each subinterval [X2j, x2i~l; thus, it is piecewise linear.
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The only possible points at which h could be discontinuous are the points in A. Let

X E A and e > 0. There exists a 8 > 0 such that for x [a, b], ifX -x < 8, then I ff.U-fx)J < F,

and I g() - g(x) < P. But f(k) = g(X), so I &(A) - (x)l <e.

The function h(x) can be shown to be a parameterized chain in a similar way.

For two strictly uniformly monotone chains C and D, the range of h(h) is the lower

chain (upper chain) of C and D. However, if C or D is a monotone chain, h and h are

undefined. The problem arises from the fact that the mappings ri 1 and ;rb1 may not be

functions. However, in the same spirit, the notions of a "lower chain" and an "upper chain"

are still applicable.

Let C be a chain monotone with respect to V, with r(C) = I. For an x E I, define

mc(x) = p: minPE l(-) d(p,t),

and

Mc(x) = p:maxPEl(X) d(p, 1).

If C is a monotone chain, then C(a,b) is the subchain of C whose projection onto the

monotone axis is the open interval (a,b). The subchain C[a,b] is a little more complicated:

Ca,b] = 71 (a) U C(a,b) U iRC1 (b). Suppose C and D are uniformly monotone and share a

common subchain. The maximal common subchain is C[a,b] = LDa,bl: C[x,al * lx,aI for

x < a, and C[by I; D[b,y for b <y. For two disjoint chains, C[a,bI and Dia,b], if

d(mc (x), 1) > d(MD (x), ) for any pointx E [a,b], then chain C[a,b] is "above" D[a,b].

Suppose C and Dare uniformly monotone with respect to i with ic(C) n ir(D) = [a, bJ,

and let a < X, < X2 <... < ?, _ b be the projection onto lof the points at which C and D intersect.

The points of intersection are selected using the following two criteria. First, for each common

subchain not orthogonal to t , there is an 1 < i < n such that

is a maximal common subchain. And second, if the maximal common subchain is orthogonal

to f, then A, for some i is the subchain's projection onto t.

The points of Ci = C(xi,Xi+1 ) have two limit points, the left limit point I(Ci): x (l(Ci )) i

and the right limit point r(C) : n(r(Ci)) = ki+l. The union of Ci and its two limit points is called

C for I <i < n.
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However, the extreme subchains have a different composition based on whether an

upper subchain or a lower subchain is being defined. The extreme upper subchains UO and

U,, require C6* and C, to have the following composition:

C.= C(X,,b) U{I(C(",,,b)), r(C;,n,b))}

whereas LO and L, require a slightly different composition:

C*= C(x,,b UI (C(nb )

LettingX0O= a and X,,,, = b, forO0!5i n we define

= IDC if C(?Li,x,+ 1)is above oix+1

A~ otherwise

Definition 4: Suppose C and D are chains uniformly monotone with respect to 1, with

~r (c)flg(D) = (a, b],and let a S X1<... < X_ !5 b be the projection onto I of the points of

intersection. Then the upper chain is the set of points in

=uou(91IiuuIJ

where Ii =1mind(p,fl r(Ui-l), l(Ui)1,mTaxd(p,l){Jr(Ui-l), l(Ui)}]. Similarly, the lower

chain is the union

L = Lk U(U Ii uL'J

where Ii = [mind(p,L) {r(L.Ii), 1(4i)1, maxd~p,le r(L,-1), 1(4,)1].
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Figure 4 depicts two chains, C (dotted) and D (dashed), uniformly monotone with

respect to the x-axis. in Fig. 4(b), the upper chain of C and D is a solid line.

An important fact of uniformly monotone chains is that their upper and lower chains

are also monotone.

Lemma 2: If C and D are chains, uniformly monotone with respect to the axis 1, then

both the upper chain and lower chain of C and D are monotone with respect to t.

C

".I . . .. ' ~ . ' ii\
/ I .\ /'

/ II

I I I "

A A2 A,, A4  b

(a): Chain C ind chain DJ

C P3b C

D ,. .D
p- *l " I . i • .- .•.

/ I P36

P3.-
S I I [ I I I I I! I

a A, A2  A3  A4  b a Ai A2  A3  A4  b

(b): Upper chain of C and D (c): Lower chain of C and D

Fig. 4-The upper chain and lower chain of two chains uniformly monotone
with respect to the x-axis
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4. STRIPS

Definition 5: Let C be a chain monotone with respect to t, where ir(C) = [a, b]. The

space bounded between the two lines perpendicular to t, one passing through a, the other

through b, is divided into two regions-the subspace strictly above C, strip+(C, 1) and the

subspace strictly below C, strip-(C, 1). If no confusion will result, strip+(C, 1) and strip-(C, 1))

are shortened to strip+(C) and strip-(C), respectively. One rationale for using the words

"upper" and "lower" in the terms upper chain and lower chain can be explained using strips.

Suppose C and D are two uniformly monotone chains, and let U and L be the upper chain

and lower chain of C and D. Then, there does not exist a point in C U D which is also in

strip+(U) or in strip-(L).

Proposition 6: Let U and L be chains uniformly monotone with respect to 1. A point

p : 7r (p) e r (L) fl r U) is in strip+(L) fl strip-(U) if and only if

d(ML(r(p)), 1) < d(p, I) < d(m(r(p)), 1) .

Figure 5 illustrates the intersection of two strips, strip+(L) and strip-(U). Both

chains L and Uare monotone with respect to the x-axis. Notice that the strip (L) n strip-(U)

is composed of two polygons. One polygon is the union of U, andL], whereas the other

polygon is the union of U3 andL 3 .

I I ! I

a A1  A2  A.3  A4  b

Fig. -. r.pL, ) fl . trip(U, I)
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STRIP INTERSECTION

Let C and D be two uniformly monotone chains with respect to 1, with

r(C)lnn(D) = [a,b] andlet a _< X, <...< ,-I - X,, = b be the projection onto I ofthe

points of intersection. The upper chain and lower chain of C and D are U and L, respectively.

The function STRIP-INTERSECTION(CD,I) returns a set of polygons P which form

the boundary of strip' ( L) fl strip- (U ).

PARAMETER AND LOCAL VARIABLE DESCRIPTIONS

C A chain, monotone with respect to t

D A chain, monotone with respect to I

f The monotone axis for C, D and all polygons in P

P The set of polygons (possibly empty) which forms the boundary of

strip (L ) nstrip- ( U )

U The lower chain of C and D
* The upper chain of C and D

n The index of the last subchain L, U,, of L, U, respectively.

STRIP-INTERSECTION(C, D, Q)

begin

1. P:={}

2. i:=1

3. while (i < n) do

begin

4. if (Uj is above L) then

begin
5. Pi:= [I(Lo),o(UmU)(X,.xi+I)

(U[r(L), r(U)]

6. P:= PUPi

end

7. i:=i+l

end

8. return(P)

end
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5. MONOTONE POLYGONS

In general, a polygon separates the plane into two regions, its "interior" (the bounded

region) and its "exterior" (the unbounded region), by the Jordan Curve Theorem. The

polygon is the "boundary" of its interior.

The path formed by moving along a polygon in a counterclockwise (clockwise) direction

about its interior is said to have a counterclockwise (clockwise) "winding."

Definition 6: A (strictly) monotone polygon P is a chain, the union of two (strictly)

uniformly monotone subchains Lp and Up; Lp, L are the lower chain, upper chain of

Lp and Up, respectively.

Note that Definition 6 requires m (Lp) = ir (Up). Two polygons (strictly) monotone with

respect to the same axis are called uniformly (strictly) monotone (Lui and Ntafos, 1988).

Figure 6 shows a strictly monotone polygon with respect to the x-axis.

The next theorem is the foundation for our monotone polygon intersection algorithm.

Theorem 1: Let P and Q be two uniformly monotone polygons, let U be the upper chain

of Lp and LQ, and let L be the lower chain of Up and UQ. Then, a point p :;r (p) e ;r (P) n ir (Q)
is interior to P fl Q if and only if

p w strip- (L) nstrip+ (U).

Fig. 6-A polygon monotone with respect to the x-axis
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PROOF. Suppose p is interior to P n Q; then

d (p, 1) > d (MLP (n(p)),t

and

d(p, 1) > d(M 1 4(p)), 1)

Thus, p e strip+(U). In a similar vein, p r strip- (L).

Conversely, suppose p is interior to strip- (L) n strip+(U); then

d(MLp(l(p)),1) < d(p,1) < d(mup(n(p)),t ) ,

which establishes p is interior to P. Substituting Q for P affirms p must also be interior

toQ.

Part (a) of Fig. 7 portrays the intersection of two polygons, a post P and a serpent Q,

uniformly monotone with respect to the x-axis. In (b) of Fig. 7, the upper chain of the

polygons' lower chains is drawn as a solid line; likewise, in (c) the lower chain of the polygons'

upper chains is a solid line. Finally, (d) of Fig. 7 visually illustrates Theorem 1.

Polygon intersection is loosely used to connote the polygon(s) that form the boundary

of the intersection of the polygons' interiors. Thus, any polygon formed by the intersection of

two uniformly monotone polygons is also monotone with respect to the same axis. The

polygon is the union of the upper chain of uniformly monotone subchains and of the lower

chain of uniformly monotone subchains.

Corollary 1: If P and Q are uniformly monotone polygons with respect to the axis 1,

then the polygons formed by intersecting P and Q are all uniformly monotone with respect to t.

MONOTONE POLYGON INTERSECTION ALGORITHM

Let P and Q be polygons uniformly monotone with respect to 1. 1 The algorithm

MONOTONE-POLYGON-INTERSECTION(P, Q, R) returns a set of polygons P = P n Q.

11f P and Q are convex polygons, then I can be any arbitrary line.
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a b a b

(a): Monotone polygon intersection (b): The upper chain Uof LP and LQ

a. . ....a. .. ..

(c):~ ~ ~ ~ ~ ~~~~~~~~P Th.oe hi fU n Q()srp(~ltu+U

Fig. 7The intersctainL of twpolygons unifrml montne withresp to(hex-)
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PARAMETER AND LOCAL VARIABLE DESCRIPTIONS

P A polygon, monotone with respect to I

Q A polygon, monotone with respect to t

9 The axis from which both Pand Q are monotone

Up The upper chain of P

Lp The lower chain of P

UQ The upper chain of Q

LQ The lower chain of Q

U The upper chain of Lpand LQ

L The lower chain of Up and UQ

P The set of polygons forming P n Q

MONOTONE-POLYGON-INTERSECTION(P, Q, t)

begin

i. if(ir(P)fln(Q) = 0) or (Lp is above UQ) or (LQ is above UP) then

2. P:=0

3. else if U = Up and L =Lp then P:= P

4. else if U = UQ and L =LQ then P:= Q

5. else P:= STRIP-INTERSECTION(U, L, 1)

6. return(T)

end

Analyzing the algorithm's time-complexity is straightforward. The upper and lower

chains of a monotone polygon can be found by examining all vertices once. Computing U and

L possibly requires another loop over both polygons' vertices. The conditions in lines 1, 3,

and 4 can be answered in 0(1) time by considering these cases while U and L are being

constructed. Finally, the function STRIP-INTERSECTION visits the polygons' vertices once

at most. We conclude that two uniformly monotone polygons can be intersected by visiting

all vertices at most three times.

The two functions we have presented require the monotone axis I as an argument. In

fact, finding the axes for which a simple polygon is monotone requires 0(n) time (Preparata

and Supowit, 1981). Therefore, the intersection of two polygons both monotone with respect

to some axis can still be found in linear time, without the axis known a priori.
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